Conférence avec Alain Aspect, prix
Cérémonie d'ouverture des commémorations du 250ᵉ anniversaire de la naissance à Lyon d'André-Marie Ampère Conférence d'Alain Aspect, Prix Nobel de
Cérémonie d'ouverture des commémorations du 250ᵉ anniversaire de la naissance à Lyon d'André-Marie Ampère Conférence d'Alain Aspect, Prix Nobel de
GSI'25 – 7th International Conference on Geometric Science of Information Dates: October 29th-31st, 2025 Location: Palais du Grand Large, Saint-Malo,
📅 17 – 25 juillet 2025 📍 Palaiseau, École Polytechnique Pour la première fois, la France a l'honneur d'accueillir les
JICABLE HVDC'25 – International Symposium on HVDC Cable Systems 📅 October 20–22, 2025 📍 Turin, Italy Jicable HVDC'25 is the
Welcome to QUEST-IS 2025 Quantum Engineering Sciences & Technologies for Industry & Services 📅 December 1–4, 2025 📍 EDF Lab,
Sulphur hexafluoride (SF6) is one of the six types of greenhouse gas covered by the Kyoto Protocol. Its global warming potential (GWP) is 23,500 times greater than carbon dioxide, making it potentially the most potent greenhouse gas on earth. It also has a lifetime in the atmosphere of up to 3,200 years, compared with around 100 years for carbon dioxide. However, SF6 gas is an excellent dielectric insulator that has been used since 1965 for electrical insulation because of its very high electrical rigidity. Worldwide, 80% of the SF6 produced is used in high-voltage AIS circuit breakers and GIS. High-voltage electrical equipment is not sealed and leaks by design. A normative leakage rate has been defined for GIS (1% until 2003, then 0.5% until 2022). By 2022, the leakage rate has been reduced to 0.1%/year for equipment using SF6 and 0.5%/year for equipment using alternative gases. For AIS circuit breakers, the leakage rate of 0.5%/year was incorporated in 2010. By the end of 2022, RTE’s installed base represented a mass of around 580 tons of SF6, with average annual emissions of 5.2 tons over [2017-2021], falling steadily over the period, and 3.82 tons in 2022, year of COLIBRI’s industrialization. Beyond environmental aspects, appearance of leaks necessarily entails maintenance operations ranging from refilling to maintain electrical insulation, to switching off equipment in order to change seals. These operations are costly (labor/supplies) and also require electrical interlocking, which increases the complexity of maintenance planning. To limit SF6 emissions and fight against global warming, while at the same time limiting the impact on operating and maintenance resources, RTE has developed a process for sealing GIS by injecting a fluid into the flange connections between the compartments during operation: the COLIBRI process.
245 kV and 420 kV substations represent more than 65% of the installed SF6 gas [1] on the grid in Europe. A large plan in Europe and in the United Kingdom consists in refurbishing existing substations and installing a large number of new assets to support the integration of renewable energy. A successful elimination of SF6 can only be done by applying SF6 alternatives at these voltage levels. Following the successful completion of the LIFEGRID project aiming at the development of a 420 kV 63 kA Circuit breaker, the demonstrated ratings of the circuit-breaker and corresponding performance will be described. An outlook on the bay and circuit-breaker architecture will be introduced to underline the benefit and robustness of the design. An update on the type tests and performance available with the bay elements will also be exposed. Disconnector bus transfer and bus charging current switching characteristics will be detailed with a comparison between the existing SF6 and the g3 (CF4-based gas mixture) versions. Then, the available performances of the fast-earthing switch for induced current switching beyond IEC standard requirements will be detailed. Finally, an outlook of the progress of the first installation of the complete 420 kV GIS substation installation will be shown. The 420 kV GIS g3 Bay and Circuit-Breaker developments are now completed and type-tested. This opens the way to an eco-friendly, complete, economical, viable and immediate SF6 abandon.
Les supraconducteurs à haute température critique ont révolutionné le monde de la supraconductivité, mais pas encore celui des applications. En revanche, les avancées sont importantes depuis quelques années avec les conducteurs de 2e génération, les rubans REBCO. Ces matériaux autorisent certaines applications refroidies à l’azote liquide pour les réseaux électriques (câble et limiteur de courant de défaut) et des inductions magnétiques intenses notamment pour des machines de fusion compactes.